Решите уравнение:  cos^{2} 2x + sin^{2}x = cos^{2}3x

(cos^{2}2x-cos^{2}3x)+sin^{2}x=0
(cos2x-cos3x)*(cos2x+cos3x)+sin^{2}x=0
(-2sin2.5x*sin0.5x)*(2cos2.5x*cos0.5x)+sin^{2}x=0
-(2*sin2.5x*cos2.5x)*(2*sin0.5x*cos0.5x)+sin^{2}x=0
-(sin5x)*(sinx)+sin^{2}x=0
sinx*(sinx-sin5x)=0
1) sinx=0
x= pi k, k∈Z
2) sinx-sin5x=0
-2*cos3x*sin2x=0
2.1) cos3x=0
3x= frac{ pi }{2}+ pi k, k∈Z
x= frac{ pi }{6}+ frac{ pi k}{3}, k∈Z
2.2) sin2x=0
2x=pi k, k∈Z
x=frac{ pi k}{2}, k∈Z

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку
×