Вычислите площадь фигуры, ограниченной линией параболой У = X^2 + 4X — 3 и касательной к ней в точках M (0, -3), N (3, 0).
1. К параболе проведено ДВЕ касательных, их общие уравнения:
1) в точке а=0
2) в точке b=3
2. Найдем уравнения касательных в указанных точках:
1)
2)
3. Начертим ТРИ графика (парабола и две прямых) в одной системе координат и выделим область, площадь которой нужно найти (см. прикрепление).
синим цветом - парабола; красным - касательная Y2; зеленым - касательная Y1.
4. Нужно найти площадь желтой фигуры.
Найдем пределы интегрирования, для этого:
4.1)
4.2)
4.3)
4.4)
Ответ: площадь фигуры равна 2,25 кв.ед.
Оцени ответ
