Начерти любой прямоугольник, проведи в нём диагонали. Докажи, что можно начертить окружность с центром в точке пересечения диагоналей, которая проходит через все вершины прямоугольника

 Т.к. Углы у него прямые, то стороны, имеющие одинаковые буквы, перпендикулярны, а другие - параллельны. Рассмотрим два треугольника: AOB и COD. Углы AOB и COD равны, (вертекильные), ABO=CDO( накрест лежащие), DCO=BAO( смежные).=> треугольники AOB и COD подобны. Но нам известно, что в AB и CD параллельны и заключены между двумя параллельными прямыми  =>AB = CD  =>треуг.  AOB и COD равны=>AO=CO. Если проделать то же самое с другими треугольниками, (BOC и AOD), то докажете, что все 4 отрезка равны, и поэтому откуржность, лежащяя в точке пересечения диагоналей и имеющая радиус рывный одному из отрезков, будет пересекать концы остальных  трех =>лежать на всех 4 углах прямоугольника.

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку