Найдите наибольшее значение функции и значение аргумента, при котором функция это значение принимает
Без анализа здесь никак (хотя может и есть точнейшие методы решения таких задач). Прежде всего, думаем при каких значениях функция
не существует. То есть найдем такие значения
, при которых выражение
не имеет смысла. Посмотрели на выражение, подумали и прикинули, что тут может быть где-то два варианта, при которых выражение не имеет смысла:
1) знаменатель обращается в нуль:
Чтобы знаменатель обратился в нуль, нужно чтобы , однако понятно, что
, значит знаменатель не обратиться в нуль.
2) выражение под корнем в знаменателе будет отрицательным (корень из отрицательного числа не имеет смысла)
Ага, имеем, что при любом значении функции не существует. То есть она идет от
и куда-то дальше. Куда — нам пока неизвестно.
Теперь посмотрим, что происходит с функцией при возрастании . Может быть она периодична?
Пока что видим, что функция убывает. Найдем пересечение с нулем. Для этого просто найдем , при котором числитель обратиться в нуль.
Попробуем вместо повставлять разные значения (большие и маленькие).
Видим, что с увеличением уменьшается
. Делаем вывод, что функция убывает бесконечно много. То есть
— не существует,
— не существует.
