Найдите точку минимума функции y=(1–2x)cosx+2sinx+7 принадлежащую промежутку (0; π/2)

Находим производную:
y= (1-2x)cosx+(1-2x)sinx+7=
y= -2cosx-(1-2x)sinx+2cosx=(2x-1)sinx
y=(2x-1)sinx, запишем уравнение (2x-1)sinx=0, (x-1/2)sinx=0
построим интервалы знакопостоянства на промежутке (0; 
π/2)
0__-__1/2__+__π/2
значит при x∈(0;1/2] y(x) убывает, при x∈[1/2;π/2) y(x) возрастает
значит на промежутке (0;π/2) минимум функции достигается в точке
x=1/2, y=(1-2*1/2)cos(1/2)+2sin(1/2)+7=2sin(1/2)+7
Ответ: x=1/2, y=2sin(1/2)+7≈7,96

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку