Найдите a если уравнения x^2+ax-2=0 и x^3+ax^2-2=0 имеют общий корень

Для любого х имеет место равенство x^3+ax^2-2=(x^2+ax-2)x+2(x-1). Обознчим через x_1 общий корень уравнений из условия. Подставляя его в это равенство, получим, что x_1-1=0, т.е. x_1=1. Значит по теореме Виета, второй корень квадратного уравнения  x^2+ax-2=0 равен -2, а значит 1-2=-a, т.е.  a=1.

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку