Основание пирамиды - равнобедренный треугольник с основанием, равным 12 см, и боковой стороной, равно 10 см. Вычислить высоту пирамиды, если все ее боковые грани образуют с плоскостью основания двугранные углы, равные 30 градусов.
С чертежом.
Чертеж в файле. Дальше не смотри
Поскольку все боковые грани образуют с основанием равные углы,то вершина проектируется в центр окружности вписаной в основание пирамиды.
S=pr. r=S/p
p=(AB+BC+AC)/2=16 (cm)
(S осн)²=p(p-AB)(p-BC)(p-AC)=16*6*6*4
Socн=48 см²
OK=r r=48/16=3(cm)
SO с треугольника SOK(O=90градусов)
tg30=OK/H
H=tg30/OK H= √3 (см)
Ответ: √3 см
Оцени ответ
