Стороны треугольника равны 4 см., 15 см, 13 см. Через вершину малейшего угла плоскости треугольника проведено перпендикуляр, и с его конца, не принадлежит треугольнике, опущен перпендикуляр длиной 13 см. На противоположную этом углу сторону. Найдите длину перпендикуляра, проведенного к плоскости треугольника.
Можете пожалуйста фото решения скинуть)

Найдем площадь данного треугольника по формуле Герона.
р=(15+13+4)/2=16

S= sqrt{p(p-a)(p-b)(p-c)} = sqrt{16(16-15)(16-13)(16-4)} =24
С другой стороны,
S=h·4/2   ⇒   h=12 ( высота данного треугольника) Она является проекцией расстояния от вершины до меньшей стороны
По теореме Пифагора
d²=13²-12²=25
d=5 cм

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку