Как найти площадь правильного шестиугольника если его большая диагональ равна 4
Обозначения во вложении.
Проведем в шестиугольнике все большие диагонали.
Т.к. шестиугольник правильный, то:
все его стороны равны, т.е. AB=BC=CD=DE=EF=FA
Большие диагонали пересекаются в одной точке О (центр описанной окружности)
Большие диагонали равны между собой(AD=BE=CF) и в точке О делятся пополам (AO=BO=CO=DO=EO=FO).
Исходя из этого, треугольники AOB, BOC,COD,DOE,EOF,FOA равны между собой по трем сторонам и являются равносторонними. Угол AOB=360/6=60 градусов. Площадь правильного треугольника равна S=a^2*(корень квадратный из 3)/2
а=2, S=корень квадратный из 3
Площадь шестиугольника=6*S=6*(корень квадратный из 3)
Оцени ответ