
Боковые ребра правильной треугольной пирамиды составляют с основанием угол в 60 градусов. Найдите объем описанного около пирамиды конуса, если сторона основания пирамиды равна а

МАВС - правильная пирамида. АВ=ВС=АС=а,
прямоугольный ΔМОА:
катет МО=Н, найти
катет АО=(2/3)АК, АК - высота ΔАВС
АК=а√3/2
АО=(а√3/2)*(2/3), АО=а√3/3
конус описан около правильной пирамиды,=> основание пирамиды - правильный треугольник в писан в окружность, вершина конуса "совпадает" с вершиной пирамиды, т.е высота пирамиды=высоте конуса. Н=а, R=AO, R=a√3/3
Оцени ответ