Медиана ВМ треугольника АВС является диаметром окружности, пересекающей сторону ВС в её середине. Найдите длину стороны АС, если радиус описанной около треугольника АВС окружности равен 7.

Так как по условию BL=LC  ,  а угол опирающийся  на  диаметр прямой то есть угол    BLM=90а, сторона   LM общая для треугольников   BML;LMC , значит  гипотенузы выше сказанных треугольников  BM=MC равны, соответственно получаем  равнобедренный треугольник так как  BM=MC ,  отсюда следует что гипотенузы- это радиусы MC=R=7, а значит  AC=2*7=14
  
 

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку