В правильном треугольной пирамиде SABC точка О-центр основания,S вершина,SO=15,AC=корень из 203.Найти боковое ребро SA.

Если пирамида правильная, то центр ее основания является центром вписанной и описанной окружности треугольника, лежащего в основании.  Радиус описанной окружности найдем по формуле R=a√3/3=√203*√3/3=√609/3

 

Боковое ребро  SA  находим по теореме Пифагора

SA^2=R^2+SO^2=(√609/3)^2+15^2=203/3+225=878/3 =√2634/3

 

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку