Найдите объём конуса, если хорда его основания, равная 6 √2 см, отсекает четверть окружности основания, а угол между образующей и плоскостью основания равен 45° .
Если четверть окружности, то 360/4 =90 - длина дугиИз центра окружности проведите две прямые к к хорде. Вот угол, образованный этими двумя прямыми будет по свойству равен половине дуги, т к он на неё опирается 45°А в любом случае если из центра к хорде провести две прямые получится равнобедренный треугольник.Дальше две стороны принимаете за Х и решаете по теореме косинусов(6√2)^2=х^2 + х^2 - 2х*соs4572=2x^2-x√236=x^2-x√2Дальше не могу дорешать, батарея садится))Доброй ночи
Оцени ответ