Площа прямокутної трапеції дорівнює S, гострий кут дорівнює a. Знайти висоту трапецii, якщо ii менша дiагональ дорiвнюэ бiльшiй основi.
Площадь прямоугольной трапеции равна S, острый угол равен a. Найти высоту трапецii, если ii меньше диагоналей дорiвнюэ большем основе.
Обозначим трапецию (слева снизу по часовой стрелке) ABCD. Пусть прямой угол будет D. Значит высота будет CD. Тогда малая диагональ BD и она равна по условию AD, т.е. треугольник ADB - равнобедренный, BD=AD,
Площадь трапеции равна полусумме оснований, умноженной на высоту.
S=(AD+BC)* CD/2
Выразим AD и BC через высоту
BC= CD* tg
AD=CD/cos(2*a-90)
(CD*tg(2*a-90)+CD/cos(2*a-90))*CD/2= S
(CD*sin(2*a-90) +CD)*CD/(2*cos(2*a-90)=S
sin (2*a-90)+1
CD^2 * --------------------- = S
2*cos(2*a-90)
2*S*cos(2*a-90)
CD =корень(--------------------- )
sin (2*a-90)+1
Оцени ответ
