Диагональ правильной четырехугольной призмы равна 18 см, а сторона её основания равна 8см.
Найти объём призмы

V призмы =S осн. *h
У правильной 4-угольной призмы в основаниях лежат квадраты, а все боковые ребра перпендикулярны основаниям.

(Смотрим рисунок):

Рассмотрим основание: квадрат со стороной a=8
Проведём диагональ и найдём её по теореме Пифагора.
d= sqrt{8^2+8^2} = sqrt{8^2*2 } =8 sqrt{2}
Площадь квадрата: S=a^2
У нас: S=8^2=64

Теперь рассмотрим прямоугольный треугольник, который содержит диагональ призмы (равную 18 по условию),   диагональ основания (равную 8 sqrt{2} )  и высоту h  
Опять же по теореме Пифагора найдем h :
h= sqrt{18^2-(8 sqrt{2})^2 } = sqrt{324-128} = sqrt{196} =14

Теперь вернёмся к нашей формуле объема призмы:

V=S осн. *h

Подставим всё:

V=64*14=896

Ответ: 896

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку