В лифт 9 этажного дома вошли 4 человека. Каждый независимо друг от друга может выйти на любом (начиная со второго) этаже. Какова вероятность того что они все вышли на пятом этаже.

Предполагаю следующее:1.  Если пять человек, вошедших в лифт, отличаются друг от друга, тогда P=(18)5C258!(1!)4⋅4!=(18)5C25C48⋅4!=(18)5C25A48,где 18- вероятность выхода i-го человека (i∈{1,2,...,5}) на j-ом этаже (j∈{2,3,...,9}).ПояснениеПусть:1.0 M={1m2m,...,5m}- множество людей, которые вошли в лифт на 1-ом этаже; при этом по условию задачи card(M)=5.1.1 M1={2m,4m}, M2={1m}, M3={3m}, M4={5m}- четыре подмножества множества M.2.0 S=⟨2s3s4s5s6s7s8s9s- последовательность этажей 9-го этажного дома, на каждом из которых могло выйти только одно из вышеуказанных подмножеств множества M.2.1 F=[2s3sM44sM25s6s7sM18s9sM3]- матрица, иллюстрирующая один из возможных вариантов "опорожнения" лифта от элементов множества M(например, подмножество M3элементов множества Mвышло из лифта на 9-ом этаже, а подмножество M1элементов множества Mвышло из лифта на 7-ом этаже).3.0 F′=[1m4s2m7s3m9s4m7s5m3s]- матрица, иллюстрирующая "выход" каждого элемента множества Mиз лифта (например, элемент 3mвышел из лифта на 9-ом этаже, а элементы 2mи 4mвышли из лифта на 7-ом этаже).2.  Если пять человек, вошедших в лифт, не отличаются друг от друга, тогда P=1C58+5−18!1!⋅3!⋅4!=35990.35

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку