Пожалуйста помогите!!!!
Для независимых случайных величин Х1,…Х4 известно, что их математическое ожидания Е(Хi)=-2, дисперсия D (Хi)=1,…4. Найти дисперсию произведения D (Х1…Х4)

X_{1}dots{X}_{4} — попарно независимые случайные величины, следовательно для нахождение дисперсий их произведения достаточно воспользоваться формулой:

D[X_{a}X_{b}] = D[X_{a}]D[X_{b}]+D[X_{a}](M[X_{b}])^{2}+D[X_{b}](M[X_{a}])^2

Посчитав D[X_1X_2] мы должны убедится, что X_1X_2 независима от X_3 и X_4. В этом легко убедиться исходя из условия попарной независимости: произведение двух из трех попарно независимых величин независимо от оставшейся.
Математическое ожидание для произведения независимых случайных величин считается следующим образом:

M[X_aX_b]=M[X_a]M[X_b]

Таким образом, применяя означенные формулы найдем характеристики X_1X_2:

D[X_1X_2]=D[X_1]D[X_2]+D[X_1](M[X_2])^{2}+D[X_2](M[X_1])^{2}=2+4+8=14
M[X_1X_2]=M[X_1]M[X_2]=-2cdot{-2}=4

Аналогичным образом находим характеристики X_1X_2X_3:

D[X_1X_2X_3] = D[X_1X_2]D[X_3]+D[X_1X_2](M[X_3])^{2}+D[X_3](M[X_1X_2])^{2}=14cdot3+14cdot4+3cdot16=42+56+48=146
M[X_1X_2X_3]=M[X_1X_2]M[X_3]=-2cdot4=-8

И наконец для X_1X_2X_3X_4:

D[X_1X_2X_3X_4]=D[X_1X_2X_3]D[X_4]+D[X_1X_2X_3](M[X_4])^{2}+D[X_4](M[X_1X_2X_3])^{2}=146cdot4+146cdot4+4cdot64=584+584+256=1424
M[X_1X_2X_3X_4]=M[X_1X_2X_3]M[X_4]=-8cdot{-2}=16

Оцени ответ
Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Загрузить картинку