Найти tgx, если sin(x+30°)+sin(x-30°)=2√(3cosx) помогите пожалуйста
Используем формулу суммы синусов
sinα + sinβ = 2 * sin * cos
α = x + 30
β = x - 30
sin (x + 30) + sin (x - 30) = 2 * sin * cos = 2 √ (3cosx)
2 * sin * cos = 2 √(3cosx)
2 * sin x * cos 30 = 2 √(3cosx)
2 * √3/2 * cosx = 2 √(3cosx)
√3 * sinx = 2 √(3cosx)
(√3 * sinx)² = (2 √(3cosx))²
3 * sin ² x = 4 * 3 * cosx
sin²x = 1 - cos²x
3 * (1 - cos²x) = 4 * 3 * cosx
1 - cos²x = 4 *cosx
cos²x + 4cosx - 1 = 0
cosx = t
t² + 4 t - 1 = 0
D = 16 - 4 * 1 * (- 1) = 16 + 4 = 20
t ₁ = (- 4 - √20)/2 = (- 4 - 2√5)/2 = - 2 - √5
t₂ = (- 4 + √20)/2 = (- 4 + 2√5)/2 = - 2 + √5
cosx = - 2 - √5 < - 1 не удовлетворяет, т.к. значения -1 ≤ cosх ≤ 1
cos x = - 2 + √5 < 1 удовлетворяет
Используем формулу
1 + tg²x =
tg²x = - 1
tg²x = - 1 = -1 = = = = = 8 + 4√5
tg²x = 8 + 4√5 = 4 (2 + √5)
tgx = 2√(2 + √5)
tgx = - 2√(2 + √5)